The Potential of Geosensor Networks for Sustainable Management of Urban Areas

Monika Sester
Institute of Cartography and Geoinformatics
Leibniz Universität Hannover

Demands: rich information

- ▶ Information about environment
- ▶ Information about use of urban infrastructure
 - Traffic flow, pedestrian movement -> planning purposes
- ▶ Up-to-date
- ▶ Multi-purpose variety of topics
- ▶ From high detail to overview
- ▶ 2D 3D temporal
- Currently acquired
 - By administration or private institutions
 - Dedicated themes by different institutions
 - In fixed update-cycles
 - Systematic coverage of areas

... on the way to

- ▶ Increasing availability of (spatial) information in the internet
- ▶ Google Earth, Microsoft acquire urban areas in high resolution
- ▶ More and more "unconventional sensors" are available
 - E.g. mobile phones can measure movement of cars -> detect traffic jams (TomTom-application)
 - Digital photography in internet
- ▶ Voluntary data acquisition, e.g. OpenStreetMap
- Geosensor Networks

Overview

- Geosensor Networks
- ▶ Collaborative data acquisition
- Collaborative data processing
- Summary and conclusion

Geosensor Networks

Geosensor Networks

- ▶ Very interesting topic, different aspects
- ▶ Miniaturization of sensors -> "smart dust"
- Communication between sensors
- Many sensors cooperate
- ▶ Global perception by cooperation
- Network can solve new tasks

7

2009/fig

Specifics

- ▶ Geodetic networks are well known ...
- Geosensor Networks if
 - No fixed infrastructure
 - Setup of infrastructure is too expensive (or not possible)
- Properties:
 - Many sensors are used
 - Sensors are small and cheap
 - Self-organization and self-configuration
 - Robust
 - Extendable
 - Low energy consumption
 - Collaboration and data fusion
 - Redundancy -> fault tolerance

Geosensor Networks

- Common goal of sensors cannot be achieved by individual sensor alone
- Composition of sensor networks is adaptable
 - Idea: sensors are "spread out" in arbitrary arrangement
 - Sensors can move
 - Or: Sensors are fixed on moveable background
- ▶ No tasks specified for each member; tasks are derived from
 - Situation / context
 - Properties of sensors (measurements, computational power, communication, ...)

Applications of Geosensor Networks

- Disaster management, e.g. earthquakes, hill slides, ...
- Surveillance, risk management (buildings, technical devices, ...)
- Military applications
- ▶ Traffic
- Glacier movements
- ▶ Human body
- Environmental information (e.g. temperature, pressure, humidity)

Cooperative data collection

2009/fig

Problems

- Miniaturization
- ▶ Measurement capabilities (typical today: temperature, pressure, orientation, ...)
- ▶ Energy
- Lifetime of sensors
- ▶ Communication vs. operations / calculations in sensor
- Capabilities of processors
- Programming / new-programming of sensors after they have been spread out

Contribution of Geodesy and Geoinformatics:

- Sensors and measurement systems
- Spatial data management and processing

2009/fig

Future Cars

- ▶ More and more sensors in vehicle
 - GPS
 - Radar
 - Cameras (Mono, nightview)
 - camera (Stereo)
 - Radar
 - Laserscanner
 -

- ► Each vehicle is able to measure information about local environment
- ➤ Communication and cooperation to neighboring vehicles (and stationary infrastructure) leads to new possibilities

Geosensor Networks: many sensors cooperating

- Extension of individual sensors' perception
 - "look around the corner"
 - Make others "transparent"
- ▶ Users can exploit information of others in order to
 - Determine state of road (e.g. in case of ice or oil-spills)
 - Find partners with similar interest in local environment
- Cooperative data capture and use
 - Cooperatively calculate model of environment (e.g. 3D-model of buildings)
 - Calculate 3D-environmental map for more precise positioning and navigation

2009/fig

"Map" from terrestrial Laser Data

Situation today and in near future

Different data are acquired by different users and sensors related to same spatial situation

- ▶ Different requirements
- ▶ Different objects
- ▶ Different richness in object descriptions
- Different scales
- Different quality
- Different time

Does this make sense?

- ▶ No longer "one data set for all purposes"
- ▶ Benefits:
 - Only data is acquired, that is necessary for current application
 - No need to capture more than is needed
 - Incremental refinement / enrichment of information is possible
 - Mutual transfer of attributes
 - "averaging" geometries
 - Reuse of information
 - Quality check, redundancy
 - Quality check by integration of data that have been acquired for different purpose

ikg

Requirements

- Automatic integration and processing
- ▶ Semantic and geometric integration
- ▶ Integrated processing of distributed information

2009/fig

Data Integration and fusion

- ▶ Integration leads to derviation of new knowledge
- Data not necessarily fit exactly: both related to semantics and to geometry

Ideal:

2009/fig

➤ System that automatically selects adequate data sets for given tasks, integrates them and geometrically adapts them

ikg

Data Integration

Motivation

- Goal: find out data sets that fit to each other
- ▶ Example: search for water areas
 - They can be represented in different data sets; typically they are named differently
 - Wasser
 - Water
 - qh/W////
- Needed:

2009/fig

- Understand meaning of data
 - Or better: use data in meaningful way
- Meaning is coded in machine readable form: ontologies, i.e. concepts and relationships
- Identification of corresponding concepts in different ontologies 1kg

Identification of corresponding concepts

- Manual identification based on analysis of individual concept descriptions, e.g. GiMoDig-Project (Harmonization of topographic data in Europe)
 - Definition and set up of "global schema" of topographic information
 - Manual identification of correspondences and transformations of local schemata of countries to global schema
- ▶ Approach for automation: instance based reasoning
- ▶ Idea:
 - If two objects are located at same position in reality and have similar structure, then they also share semantic similarities
 - i.e.: exploitation of identical geometries to infer semantic correspondences

2009/fig

Instance based approach

- Geometric coincidence
 - Same spatial extent
 - And / or
 - Similar geometric properties
- Semantic correspondence
 - Two descriptions concerning same physical entity
 - -> relation between descriptions

Test data sets

- ATKIS and TeleAtlas (GDF) → similar scale 1:25.000
- Test area: Hanover 25 km²
- Polygon-objects

Ontology Representation: ATKIS

Ontology Representation: GDF

Which concepts from ATKIS correspond to which concepts from GDF?

Moodeling with Protegé

Methods to establish correspondences

- Matching of overlapping geometries
 - layer structure
 - Intersection
 - Area comparison
 - Statistical analysis

		data set II		
		1	2	3
dat	O	N _{C1}	N _{C2}	N _{C3}
data set	В	N _{B1}	N _{B2}	N_{B3}
ıt I	Α	N _{A1}	N _{A2}	N _{A3}

N: number of possible matching candidates

Intersection Matrix

Intersection Matrix

Matching of overlapping geometries

 $V_1 = \frac{I \cdot 100}{O_1}$ $V_2 = \frac{I \cdot 100}{O_2}$

 $V_1 \ge 80\% \land V_2 \ge 80\%$ (1:1)

 $V_1 \ge 80\% \lor V_2 \ge 80\%$ (1: n)

Legend

O₁ O₂

1

ikg

Analysis of Correspondences

- ▶ Analysis of links
- Links on instance level reveal correspondences on concept level
 - 1:1 relationship \rightarrow Equivalence $(X_1 \equiv X_2)$
 - 1: n relationship \rightarrow Inclusion $(X_1 \subseteq X_2)$
 - n: m relationship \rightarrow Overlap $(X_1 \cap X_2 \neq 0)$
 - 1:0 relationship \rightarrow Disjunction ($X_1 \cap X_2 = \emptyset$)

Analysis of 1:1-Correspondences

ikg

ikg

2009/fig

Analysis of Correspondences Equivalence ($X_1 \equiv X_2$) $\Rightarrow 1:1 \text{ relation}$ Administrative Area 1120 1119 Order a9 Administrative 7100 7200 Geographical Unit 1sland a8 = 7101

2009/fig

ikg

Benefits

- Automatic identification of corresponding concepts in different ontologies
- ▶ Object instances reflect use of concepts and also context into which concepts are embedded
- ► Automation of data use
- Mutual data enrichment (e.g. by exchange of attributes between corresponding objects)
- ► Fusion of data sets for integrated analysis, e.g. using geometric morphing

ikg

Correspondences of object boundary

2009/fig

Adapation – different weights

- ▶ p = 0.5 : intermediate geometry
- ▶ p = 1.0 : adaptation to one reference geometry

Interpolation

2009/fig

▶ Weights (Reference 1.0 : Candidate 0.0)

ikg

Quality analysis

- ▶ Identification of deviations between data sets
- ▶ Large deviations give rise to
 - Different levels of detail
 - Different quality levels (e.g. acquisition with sensors of different quality)
- ► Integration of many measurements lead to quality improvement

Collaborative positioning

2009/fig Source: S. Thrun, Stanford

Collaborative Distributed Processing

- ▶ Local decision making to achieve intended global goal
- ▶ Prerequisite
 - Local processing capabilities
 - Local operations: algorithms that operate on local knowledge but can monitor geographic phenomena with global extents (<-> algorithms that operate on entire data sets)
 - Cooperation of sensors in local neighborhood (neighborhood size depends on communication range)
- ▶ Example:
 - Detection of boundaries of spatial phenomenon
 - E.g. temperature sink, movement (hill slide), ...
 - Additional prerequisite: moving sensors

2009/fig

Spatial phenomenon

► Task: detect the boundary of the phenomenon using distributed sensor network

[Sester 2009]

Distributed Detection of Phenomenon Boundary

➤ Sensors are distributed and individually measure phenomenon (e.g. temperature, velocity, ...)

Distributed Detection of Phenomenon Boundary

- ▶ Sensor distribution and measurement (here: binary):
 - Green: phenomenon detected
 - Blue: no phenomenon detected

Distributed Detection of Phenomenon Boundary

► Communication range of sensors (here: nearest neighbors)

2009/fig

Distributed Detection of Phenomenon Boundary

► Simple interpolation of boundary

Distributed Detection of Phenomenon Boundary

Not exactly reflects true boundary

2009/fi

Distributed Detection of Phenomenon Boundary ▶ Before SOM-adaptation

- ▶ After SOM-adaptation
 - Sensors move towards phenomenon boundary
 - Sensor distribution is more dense at boundary

Distributed Detection of Phenomenon Boundary

▶ Result: better approximation of boundary

Summary and Conclusion

Geo-Sensor Networks: challenges and benefits

- ▶ Challenges:
 - Heterogeneous data
 - Heterogeneous quality
 - Heterogeneous coverage
 - Heterogeneous data types: from low-level to high-level information, e.g. raw Lidar points to GIS-data
- ▶ Benefits:

2009/fig

- Highly timely information -> "instant information"
- Scalability
- Redundancy fault tolerance:
 - System does not depend on one sensor
- Multi-purpose use of data (beyond original acquisition purpose)

ikg

Outlook on future research topics

- ► Continuous blur between data acquisition and processing
- On-the-fly data interpretation based on uncertain and incomplete knowledge
- ▶ Privacy issues
 - How can I both use the crowd-collected services but not give away my privacy?
- Interoperability
 - Seamless integration and fusion of information
- Quality
 - Assure and propagate quality measures of data and and processes

